

A Time Efficient Comprehensive Model of Approximate Multipliers for Design Space Exploration

ARITH 2024

Ziying Cui, Ke Chen, Bi Wu, Chenggang Yan, Yu Gong and Weiqiang Liu

College of Integrated Circuits

Nanjing University of Aeronautics and Astronautics

Proposed Comprehensive Model

Evaluation and Analysis

Verification

Content

Conclusion

Introduction

Introduction

Intrinsic fault tolerance

human perception / noise floor

Trade-off performance, power, and error Multipliers

Approximate Computing

Fast and accurate model for Design Space Exploration

Adders, MAC,

Approximate

Motivation

Proposed Comprehensive Model

Evaluation and Analysis

Verification

Content

Conclusion

Proposed Comprehensive Model

> The model is mainly applied to the deliberately designed approximate multiplier.

Approximate Approaches

7

Proposed Error Model

> The model can generate error metrics including

> An explicit model for uniform input distributions is provided, offering enhanced computational speed.

Tip1: When *a* and *b* is mutual independence, we have

 $\sum_{i=0}^{m} \sum_{j=0}^{n} a_{i} b_{j} = \sum_{i=0}^{m} a_{i} \sum_{j=0}^{n} b_{j}$

Proposed Error Model

> A new paradigm is needed for approximate methods concerning two inputs.

Tip2: Utilizing the one-to-many relationships between relevant partial products and input combinations.

- Only the high n bits of A_r are relevant to the first n rows of partial products.
- > When the *n* LSBs of B_r are all zero, it cuts the connection to the high *n* bits of A_r .
- ➤ The ED is pre-stored in a Look-up Table.

Proposed Error Model

> Take *MED* of an *N*-bit multiplier using it-bit input-truncation for example.

$$A/B \longrightarrow A_{21}2^{it} + A_{0}$$

$$ED = E - A_{21}2^{it} \times B_{21}2^{it} = 2^{it} \times (A_{21}B_{0} + B_{21}A_{0}) + A_{0}B_{0}$$

$$MED' = \sum_{a_{21}=-Ed_{it}}^{Ed_{it}-1} \sum_{b_{21}=-Ed_{it}}^{Ed_{it}-1} \sum_{a_{0}=0}^{2^{it}-1} \sum_{b_{0}=0}^{2^{it}-1} a_{0}b_{0} \times p_{a}p_{b}$$

$$MED' = \sum_{a_{0}=0}^{Ed_{it}-1} a_{0} \times p_{a_{0}} \sum_{b_{0}=0}^{2^{it}-1} b_{0} \times p_{b_{0}}$$

$$ED_{it} = 2^{N-it-1} \qquad p_{a_{0}} = P(A_{0} = a_{0}) = \sum_{a_{21}=-Ed_{it}}^{Ed_{it}-1} P(A = a_{21}2^{it} + a_{0})$$

Proposed Hardware Model

Partition Counting

It can be expanded to different technology, approximate Booth encoding algorithm, and approximate compressor.

Area/Delay : multiply total/maximum number by corresponding area/delay.

$$A_{com}/T_{com} = C_{ppg}A_{ppg}/T_{ppg} + C_{ppc}A_c/T_{c-s} + C_aA_a/T_{a-c}$$

Power: curve fitting based on area due to strong correlation.

Taking array multiplier as an example:

 $P_{com} = 0.0001768A_{com} - 0.004179$

Proposed Comprehensive Model

Evaluation and Analysis

Verification

Content

Conclusion

Evaluation and Analysis: Error Model Precision

Table I: The Accuracy and Runtime Compared with Exhaustive Simulation of MED, MRED, MAED and RMS_{ed}.

]	lasut	MED		MRED			MAED			RMS _{ed}]	
	Input	Diff/	ex_time/	runtime	Diff/	ex_time/	runtime	Diff/	ex_time/	runtime	Diff/	ex_time/	runtime	
	distribution	10^{-13}	m_time(s)	ratio	10^{-15}	m_time(s)	ratio	10^{-13}	m_time(s)	ratio	10^{-13}	m_time(s)	ratio	
	8-bit array multiplier with 2-bit input-truncation, 3-bit partial-product-truncation and compensation													
	uniform	0	1.40 / 0.0012	1166.67	0	1.48 / 0.0031	477.42	0	1.47 / 0.088	16.7	0	1.45 / 0.0016	906.25	
Gaussian	$\mu = 0 \ \sigma = 100$	4.09	1.51 / 0.0047	321.28	-0.059	1.57 / 0.0075	209.33	-3.41	1.61 / 0.34	4.74	-6.82	1.56 / 0.016	97.5	
Distribution	$\mu = 50$ $\sigma = 200$	8.6	1.50 / 0.0047	319.16	-0.247	1.60 / 0.0075	213.33	7.67	1.56 / 0.32	4.88	0.568	1.55 / 0.017	91.18	
	10-bit radix_	4 booth m	ultiplier wit	th 3-bit inp	out-trunca	tion and co	ompensatio	on, 2-bit p	artial-prod	uct-trunca	ition and c	compensati		
	uniform	0	45.16 / 0.0021	21504.76	0	46.14 / 0.0077	5992.21	0	45.21 / 0.66	68.5	0	44.89 / 0.0029	15479.31	
	$\mu = 0$ $\sigma = 100$	3.77	27.34 / 0.008	3417.5	26	47.84 / 0.025	1913.6	23.3	46.88 / 3.77	12.44	3.41	47.54 / 0.038	1251.05	
	$\mu = 50$ $\sigma = 200$	2.82	46.64 / 0.0087	5360.92	1.11	47.72 / <u>0.02</u> 5	1908.8	-235	47.92 / 3.83	12.51	-5.68	49.69 / <u>0</u> .036	1380.28	
	12-	12-bit radix_8 booth multiplier with 1-bit input-truncation and compensation, 4-bit partial-product-truncation Multi									Multiplier			
	uniform	0	377.84 / 0.018	20991.11	-141	388.10 / 0.087	4460.92	0	402.45 / 1.33	302.59	0	390.2 / 0.021	18580.95	descriptior
	$\mu = 0 \ \sigma = 100$	24.1	411.9 / 0.13	3168.46	-241	421.95 / 0.35	1205.57	1550	414.22 / 17.15	24.15	0.426	414.63 / 0.58	714.88	
	$\mu = 50$ $\sigma = 200$	75	407.36 / 0.13	3133.54	-17.3	419.75 / 0.33	1354.03	12000	426.53 / 17.28	24.68	-1.71	421.83 / 0.58	727.29	

Evaluation and Analysis: Hardware Model Precision

Fig.2: Hardware evaluation using 25 representative multipliers for area, power consumption and PDP.

	MRED	WC_RED
Area	-0.055‰	-0.726‰
Power	-0.28‰	-1.90%
Delay	-3.18%	-10%
PDP	3.2%	-10.5%

- Area model has a high precision owe to accurate partition counting and almost constant cell area.
- Power model is slightly worse than that of the area.
- Delay model is affected by varying delays among the same elements.

Evaluation and Analysis: Error Model Performance

¹Encoding scheme, input-truncation bit-width, partial-product-truncation bit-width, compensation for input-truncation and compensation for partial-product-truncation

ARITH 2024

15

Evaluation and Analysis: Error Model Performance

Fig.3: The time ratio of the Monte Carlo simulation method to the proposed method and the errors for four metrics

Proposed Comprehensive Model

Content

Evaluation and Analysis

Verification

Conclusion

Verification: Convolution

> 20 representable multipliers form a 794 billion design space.

Comparable Pareto-optimal sets with 10 times faster

Fig.4: The Pareto-optimal values using the proposed model and Monte Carlo method.

[9] D. Sengupta, F. S. Snigdha, J. Hu, and S. S. Sapatnekar, "SABER: Selection of Approximate Bits for the Design of Error Tolerant Circuits," in 54th Annual Design Automation Conference, 2017, pp. 1–6.
 [10] J. Castro-Godnez, J. Mateus-Vargas, M. Shafique, and J. Henkel, "AxHLS: Design space exploration and high-level synthesis of approximate accelerators using approximate functional units and analytical models," in Proceedings of the 39th International Conference on Computer-Aided Design, 2020, pp. 1–9.
 [11] M. Awais, H. G. Mohammadi and M. Platzner, "An MCTS-based Framework for Synthesis of Approximate Circuits," IFIP/IEEE International Conference (VLSI-SoC), Verona, Italy, 2018, pp. 219-224.

Verification: Convolution

> Select the optimal values under four accuracy constraints for two objects.

	MSE_set /10 ⁷	MSE_ex /10 ⁷	PSNR_ex /dB	Synthesis	Analytical Model	
		PDP-optimal	PDP/ $\mu w \cdot ns$			
	0	0	+∞	856.96	/	
I	1	0.98	33.45	176.02	173.05	
	2	2.01	30.34	131.06	131.00	
	6	5.98	25.61	74.28	73.02	
	10	9.98	23.38	50.50	52.94	
		Area-optimal	Area/ μm^2			
	0	0	+∞	2158.76	/	
I	1	0.98	33.45	604.93	604.95	
	2	2.00	30.36	475.27	474.61	
	6	5.98	25.61	287.28	288.46	
	10	9.96	23.39	225.41	226.20	

MRED of model error is **2.3‰** and **2.1%** for PDP and Area.

79.46% reduction of PDP is achieved when the MSE is constrained to 10^7.

Area can be reduced by **71.98%** when the optimal area is required

Verification: Gaussian Blur

25 8-bit grayscale maps for input distribution

20dB and 30dB restriction

 $Area = 951.05 \mu m^2$ $PDP = 294.98 \mu W \cdot ns PP$

PDP, 20.37dBPDP, 30.00dBPDP = $34.32\mu W \cdot ns$ PDP = $92.66\mu W \cdot ns$

68.59% less PDP for 30dB restriction

56.21% less area for 30dB restriction

Area, 20.37 dB $Area = 221.89 \mu m^2$

Area, 30.04dB $Area = 416.43\mu m^2$

Fig.5: Resulting images of Gaussian blur for different targets.

Proposed Comprehensive Model

Evaluation and Analysis

Verification

Conclusion

Content

Conclusions

- In proposed comprehensive model, five distinct quality metrics in addition to four hardware metrics are derived.
- In comparison to the Monte Carlo simulation method, the proposed model demonstrates a remarkable reduction in runtime, with an average decrease of 120.85, and in specific instances, as low as 2,500.
- The 3*3 convolution circuit and Gaussian Blur application is employed to verify the proposed model with 79.46% reduction in PDP and a 71.98% reduction in area when compared to the accurate counterpart.

Thanks!